A077763 Number of ways of pairing the odd squares of the numbers 1 to n with the even squares of the numbers n+1 to 2n such that each pair sums to a prime.
1, 1, 0, 1, 2, 0, 1, 1, 2, 2, 0, 1, 7, 2, 10, 14, 38, 6, 118, 62, 80, 144, 604, 711, 6201, 4005, 8570, 14544, 126725, 124618, 281566, 323297, 382314, 157132, 1374799, 594736, 7274196, 8865745, 27572536, 34358242, 309696376, 457523710, 2659232903, 1429551708, 8294430525
Offset: 1
Keywords
Examples
a(5)=2 because two pairings are possible: 1+36=37, 9+100=109, 25+64=89 and 1+100=101, 9+64=73, 25+36=61.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..50
Programs
-
Mathematica
try[lev_] := Module[{j}, If[lev>n, (*Print[soln]; *) cnt++, For[j=1, j<=Length[s[[lev]]], j++, If[ !MemberQ[soln, s[[lev]][[j]]], soln[[lev]]=s[[lev]][[j]]; try[lev+2]; soln[[lev]]=0]]]]; maxN=28; For[lst1={1}; n=2, n<=maxN, n++, s=Table[{}, {n}]; For[i=1, i<=n, i=i+2, For[j=n+1, j<=2n, j++, If[PrimeQ[i^2+j^2], AppendTo[s[[i]], j]]]]; soln=Table[0, {n}]; cnt=0; try[1]; AppendTo[lst1, cnt]]; lst1
Extensions
a(29)-a(45) from Bert Dobbelaere, Sep 08 2019
Comments