A077775 Odd numbers k such that (10^k - 1)/3 - 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime) of the form 3...313...3.
3, 7, 15, 123, 181, 185, 539, 597, 643, 743, 1553, 3135, 4769, 5133, 6177, 11733, 16103, 18997, 25271, 49025, 65043, 87965
Offset: 1
Examples
a(3) = 15 corresponds to the prime (10^15 - 1)/3 - 2*10^7 = 333333313333333.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 33...33133...33
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(10^n - 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 49100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
PARI
is(n)=bittest(n,0)&&ispseudoprime(10^n\3-2*10^(n\2)) \\ M. F. Hasler, Mar 03 2019
Formula
a(n) = 2*A183174(n) + 1.
Extensions
a(21)-a(22) from Robert Price, Jan 29 2016
a(21) corrected by Robert Price, Feb 03 2016
Name corrected by Jon E. Schoenfield, Oct 31 2018
Name edited by M. F. Hasler, Mar 03 2019
Comments