cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077775 Odd numbers k such that (10^k - 1)/3 - 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime) of the form 3...313...3.

Original entry on oeis.org

3, 7, 15, 123, 181, 185, 539, 597, 643, 743, 1553, 3135, 4769, 5133, 6177, 11733, 16103, 18997, 25271, 49025, 65043, 87965
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(23) > 2*10^5. - Robert Price, Jan 29 2016
Primes of the form (10^k-1)/3 - 2*10^floor(k/2) are obtained for k in (2, 3, 6, 7, 8, 10, 15, 22, 34, 123, 126, 144, 181, 185, 198, 534, 539, 597, 606, ...). For example (10^2 - 1)/3 - 2*10^1 = 13 is also prime. However, for even k the result is not palindromic. See A077775-A077798, A107123-A107127 for PWP's with digits other than 3 and 1. - M. F. Hasler, Mar 03 2019

Examples

			a(3) = 15 corresponds to the prime (10^15 - 1)/3 - 2*10^7 = 333333313333333.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n - 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 49100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
  • PARI
    is(n)=bittest(n,0)&&ispseudoprime(10^n\3-2*10^(n\2)) \\ M. F. Hasler, Mar 03 2019

Formula

a(n) = 2*A183174(n) + 1.

Extensions

a(21)-a(22) from Robert Price, Jan 29 2016
a(21) corrected by Robert Price, Feb 03 2016
Name corrected by Jon E. Schoenfield, Oct 31 2018
Name edited by M. F. Hasler, Mar 03 2019