A077778 Numbers k such that (10^k - 1) - 7*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
3, 17, 19, 705, 1061, 1395, 2631, 3837, 5749, 11753, 13537, 125877, 269479
Offset: 1
Examples
17 is a term because (10^17 - 1) - 7*10^8 = 99999999299999999.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 99...99299...99
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[10^n - 7*10^Floor[n/2] - 1], Print[n]], {n, 3, 14600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A115073(n) + 1.
Extensions
Two more terms from PWP table added by Patrick De Geest, Nov 05 2014
Name corrected by Jon E. Schoenfield, Oct 31 2018
Comments