A077781 Numbers k such that 7*(10^k - 1)/9 - 3*10^floor(k/2) is a palindromic wing prime (also known as near-repdigit palindromic prime).
5, 7, 13, 47, 73, 139, 1123, 1447, 6877, 8209, 18041, 27955, 39311, 64801
Offset: 1
Examples
7 is a term because 7*(10^7 - 1)/9 - 3*10^3 = 7774777.
References
- C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 77...77477...77
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(7*10^n - 27*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 39400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
PARI
for(n=1, 1e3, if(ispseudoprime((7*10^(2*n+1)-27*10^n-7)/9), print1(2*n+1, ", "))) \\ Altug Alkan, Nov 23 2015
Formula
a(n) = 2*A183179(n) + 1.
Extensions
a(14) from Robert Price, Nov 23 2015
Name corrected by Jon E. Schoenfield, Oct 31 2018
Comments