A077782 Numbers k such that (10^k - 1) - 5*10^floor(m/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
29, 45, 73, 209, 2273, 35729, 50897
Offset: 1
Examples
29 is a term because (10^29 - 1) - 5*10^14 = 99999999999999499999999999999.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 99...99499...99
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[10^n - 5*10^Floor[n/2] - 1], Print[n]], {n, 3, 50900, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A183185(n) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
Comments