A077784 Numbers k such that (10^k - 1)/3 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
3, 5, 35, 159, 237, 325, 355, 371, 481, 1649, 3641, 4709, 269623
Offset: 1
Examples
5 is a term because (10^5 - 1)/3 + 2*10^2 = 33533.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 33...33533...33
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(10^n + 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 4800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A183175(n) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
a(13) from Robert Price, Aug 03 2024
Comments