A077785 Odd numbers k such that the palindromic wing number (a.k.a. near-repdigit palindrome) 7*(10^k - 1)/9 - 2*10^((k-1)/2) is prime.
3, 15, 27, 117, 259, 507, 3315, 4489, 4875, 15849, 19807, 23799, 36315, 37915, 47331, 211219
Offset: 1
Examples
15 is in the sequence because 7*(10^15 - 1)/9 - 2*10^7 = 777777757777777 is prime.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 77...77577...77
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(7*10^n - 18*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 40000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A183180(n) + 1.
Extensions
a(15) from Robert Price, Jun 23 2017
Example edited by Jon E. Schoenfield, Jun 23 2017
Name edited by Jon E. Schoenfield, Jun 24 2017
a(16) from Robert Price, Oct 12 2023
Comments