cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332195 a(n) = 10^(2n+1) - 4*10^n - 1.

Original entry on oeis.org

5, 959, 99599, 9995999, 999959999, 99999599999, 9999995999999, 999999959999999, 99999999599999999, 9999999995999999999, 999999999959999999999, 99999999999599999999999, 9999999999995999999999999, 999999999999959999999999999, 99999999999999599999999999999, 9999999999999995999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183186 = {88, 112, 198, 622, 4228, ...} for the indices of primes.

Crossrefs

Cf. (A077786-1)/2 = A183186: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332115 .. A332185 (variants with different repeated digit 1, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332195 := n -> 10^(n*2+1)-4*10^n-1;
  • Mathematica
    Array[ 10^(2 # + 1) - 1 - 4*10^# &, 15, 0]
  • PARI
    apply( {A332195(n)=10^(n*2+1)-1-4*10^n}, [0..15])
    
  • Python
    def A332195(n): return 10**(n*2+1)-1-4*10^n

Formula

a(n) = 9*A138148(n) + 5*10^n.
G.f.: (5 + 404*x - 1300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A183186 Numbers k such that 10^(2k+1) - 4*10^k - 1 is prime.

Original entry on oeis.org

88, 112, 198, 622, 4228, 10052, 55862
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 4*10^n - 1], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime(10^(2*n+1)-4*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077786(n) - 1)/2.
Showing 1-2 of 2 results.