A077787 Numbers k such that (10^k - 1)/9 + 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
21, 29, 81, 119, 321, 825, 1121, 2579, 3693
Offset: 1
Examples
21 is a term because (10^21 - 1)/9 + 5*10^10 = 111111111161111111111.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 11...11611...11
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(10^n + 45*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 4000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A107126(n) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
Comments