A077788 Numbers k such that 7*(10^k - 1)/9 - 10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
9, 11, 17, 23, 2489, 3371, 4019, 29315, 30237, 40665, 101661, 150125
Offset: 1
Examples
11 is a term because 7*(10^11 - 1)/9 - 10^5 = 77777677777.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 77...77677...77
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(7*10^n - 9*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 30300, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A183181(n) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
a(10) from Robert Price, Oct 07 2023
a(11) from Robert Price, Oct 17 2023
a(12) from Robert Price, Dec 06 2023
Comments