A077790 Numbers k such that (10^k - 1)/3 + 4*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
3, 7, 15, 23, 27, 35, 59, 63, 67, 155, 1867, 3111, 23517, 235415
Offset: 1
Examples
23 is a term because (10^23 - 1)/3 + 4*10^11 = 33333333333733333333333.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 33...33733...33
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(10^n + 12*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 23600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A183176(n) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
a(14) from Robert Price, Oct 30 2023
Comments