A077794 Odd integers k such that 10^k - 1 - 10^((k-1)/2) is a prime of the form 9...989...9, called a palindromic wing prime or a near-repdigit palindromic prime.
53, 757, 2493, 3597, 5835, 46069, 95019, 104281, 134809
Offset: 1
Examples
a(1) = 53 corresponds to the 53-digit prime p = 99999999999999999999999999899999999999999999999999999. a(2) = 757 corresponds to p = (10^757 - 1) - 10^378 = 99...99899...99.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 99...99899...99
- PrimePages, Database Search Output.
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[10^n - 1*10^Floor[n/2] - 1], Print[n]], {n, 3, 104300, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
PARI
is(n)=bittest(n,0)&&ispseudoprime(10^n-1-10^(n\2)) forstep(n=1,oo,2,is(n)&&print1(n",")) \\ M. F. Hasler, Mar 03 2019
Formula
a(n) = 2*A183187(n) + 1.
Extensions
a(9) from PWP table, added by Patrick De Geest, Nov 05 2014
Comments