A077796 Numbers k such that 7*(10^k - 1)/9 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
3, 5, 17, 39, 41, 425, 561, 1775, 2043, 11031, 16233, 23705
Offset: 1
Examples
17 is a term because 7*(10^17 - 1)/9 + 2*10^8 = 77777777977777777.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 77...77977...77
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(7*10^n + 18*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 23800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Formula
a(n) = 2*A183183(n) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
Comments