cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A202480 Riordan array (1/(1-x), x(2x-1)/(1-x)^2).

Original entry on oeis.org

1, 1, -1, 1, -1, 1, 1, 0, 1, -1, 1, 2, -1, -1, 1, 1, 5, -5, 2, 1, -1, 1, 9, -10, 8, -3, -1, 1, 1, 14, -14, 14, -11, 4, 1, -1, 1, 20, -14, 14, -17, 14, -5, -1, 1, 1, 27, -6, 0, -9, 19, -17, 6, 1, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 20 2011

Keywords

Comments

Row sums are Fibonacci(n-1) = A000045(n-1).
Diagonal sums are A078003(n).
(Sum_{j, 0<=j<=k} T(k,j))/(1-2x)^k gives g.f. of column A165241(n+k-1,k-1) in triangular array in A165241.

Examples

			Triangle begins :
1
1, -1
1, -1, 1
1, 0, 1, -1
1, 2, -1, -1, 1
1, 5, -5, 2, 1, -1
1, 9, -10, 8, -3, -1, 1
1, 14, -14, 14, -11, 4, 1, -1
(1+x^2-x^3)/(1-2x)^3 is the g.f of column A165241(n+2,2) := 1, 6, 25, 85, 258, 728, 1952, 5040, ...
		

Crossrefs

Formula

T(n,k) = 2*T(n-1,k) + 2*T(n-2,k-1) - T(n-1,k-1) - T(n-2,k).
T(n,k) = (-1)^n*A124341(n,k).

A122788 (1,3)-entry of the 3 X 3 matrix M^n, where M = {{0, -1, 1}, {1, 1, 0}, {0, 1, 1}}.

Original entry on oeis.org

0, 1, 1, 0, 0, 2, 4, 4, 4, 8, 16, 24, 32, 48, 80, 128, 192, 288, 448, 704, 1088, 1664, 2560, 3968, 6144, 9472, 14592, 22528, 34816, 53760, 82944, 128000, 197632, 305152, 471040, 727040, 1122304, 1732608, 2674688, 4128768, 6373376, 9838592, 15187968, 23445504
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 20 2006

Keywords

Comments

Essentially the same as A078003: a(n) = A078003(n-1).

Examples

			a(7)=4 because M^7 = {{0,4,4},{4,4,8},{8,12,12}}.
		

Programs

  • Maple
    with(linalg): M[1]:=matrix(3,3,[0,-1,1,1,1,0,0,1,1]): for n from 2 to 42 do M[n]:=multiply(M[1],M[n-1]) od: 0,seq(M[n][1,3],n=1..42);
    a[0]:=0: a[1]:=1: a[2]:=1: for n from 3 to 42 do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3] od: seq(a[n],n=0..42);
  • Mathematica
    M = {{0, -1, 1}, {1, 1, 0}, {0, 1, 1}}; v[1] = {0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]
  • PARI
    concat(0, Vec(x*(1 - x) / (1 - 2*x + 2*x^2 - 2*x^3) + O(x^50))) \\ Colin Barker, Mar 03 2017

Formula

Recurrence relation a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) (follows from the minimal polynomial of the matrix M).
a(n) = A078003(n-1). - R. J. Mathar, Aug 02 2008
G.f.: x*(1 - x) / (1 - 2*x + 2*x^2 - 2*x^3). - Colin Barker, Mar 03 2017

Extensions

Edited by N. J. A. Sloane, Nov 24 2006
Showing 1-2 of 2 results.