cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078164 Numbers k such that phi(k) is a perfect biquadrate.

Original entry on oeis.org

1, 2, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 1297, 1387, 1417, 1729, 1971, 2109, 2223, 2289, 2331, 2445, 2457, 2565, 2594, 2608, 2774, 2812, 2834, 2835, 3052, 3260, 3458, 3888, 3912, 3924, 3942, 3996, 4104, 4212, 4218
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

Corresponding values of phi include 1, 16, 256, 1296, 4096, ... and these arise several times each.
a(3) = A053576(4).
A013776 is a subsequence since phi(2^(4*n+1)) = (2^n)^4. - Bernard Schott, Sep 22 2022
Subsequence of primes is A037896 since in this case: phi(k^4+1) = k^4. - Bernard Schott, Mar 05 2023

Crossrefs

Subsequence of A039770. A037896 is a subsequence.
Sequences where phi(k) is a perfect power: A039770 (square), A039771 (cube), this sequence (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th).

Programs

  • Mathematica
    k=4; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[5000],IntegerQ[Surd[EulerPhi[#],4]]&] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    is(n)=ispower(eulerphi(n),4) \\ Charles R Greathouse IV, Apr 24 2020
    
  • Python
    from itertools import count, islice
    from sympy import totient, integer_nthroot
    def A078164_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(totient(n),4)[1], count(max(1,startvalue)))
    A078164_list = list(islice(A078164_gen(),20)) # Chai Wah Wu, Feb 28 2023