Original entry on oeis.org
2, 3, 7, 13, 73, 871782913, 1307674369, 62044840173323943937, 33078854415193864122595302822125378214568325182093497117061192683541123570097156545925087233
Offset: 1
Original entry on oeis.org
5, 23, 11, 71, 503, 62270207, 871782911, 121645100408831, 243290200817663, 304888344611713860501503, 137637530912263450463159795815809023
Offset: 1
-
A004154 := proc(n) option remember ; local m ; if n <= 1 then RETURN(1) ; else m := A004154(n-1)*n ; while m mod 10 = 0 do m := m /10 ; end ; RETURN(m) ; fi ; end: n := 1 ; while true do f := A004154(n) : if isprime(f-1) then printf("%d, ",f-1) ; fi ; n := n+1 : od : # R. J. Mathar, Feb 27 2007
-
v=[];for(n=1,500,if(ispseudoprime(t=n!/10^valuation(n!,5)-1),v=concat(v,t))); v \\ Charles R Greathouse IV, Feb 14 2011
A078305
Numbers k such that A004154(k) - 1 is prime.
Original entry on oeis.org
3, 4, 5, 6, 7, 13, 14, 19, 20, 28, 37, 99, 100, 108, 141, 304, 442, 682, 3641, 4076
Offset: 1
-
f[n_] := n!/10^Sum[ Floor[n/5^k], {k, 1, Log[10, n] + 1}]; Do[ If[ PrimeQ[ f[n] - 1], Print[n]], {n, 1, 750}]
A078394
Numbers k such that reverse(A004154(k)) + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 39, 256
Offset: 1
-
f[n_] := n!/10^Sum[Floor[n/5^k], {k, 1, Log[10, n] + 1}]; Do[ If[ PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ f[n]]]] + 1], Print[n]], {n, 0, 800}]
Showing 1-4 of 4 results.
Comments