A078218 Smallest multiple of n that begins with the concatenation of the divisors of n (in increasing order).
1, 12, 132, 124, 15, 1236, 175, 1248, 1395, 12510, 1111, 12346128, 1131, 127148, 13515, 124816, 1173, 12369186, 1197, 12451020, 137214, 12112210, 12305, 1234681224, 1525, 1213264, 1392714, 1247142820, 12905, 12356101530, 13113
Offset: 1
Examples
The concatenation of the divisors of 7 is 17; 175 = 25*7 is the smallest multiple of 7 that begins with 17, so a(7) = 175.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
cdiv:= proc(n) local D,R,j; D:= sort(convert(numtheory:-divisors(n),list)); R:= D[1]; for j from 2 to nops(D) do R:= R * 10^(1+ilog10(D[j])) + D[j]; od; R end proc: f:= proc(n) local t,i,r; t:= cdiv(n); for i from 0 do r:= n * ceil(t*10^i/n); if r < (t+1)*10^i then return r fi od end proc: map(f, [$1..50]); # Robert Israel, Oct 07 2024
-
PARI
{for(n=1,31,k=floor(log(n)/log(10))+1; d=divisors(n); v=Str(); for(i=1,matsize(d)[2], v=concat(v,Str(d[i]))); s=eval(v); t=s+1; m=floor(log(s)/log(10))+1; d=k-m; s=s*10^d; t=t*10^d; b=1; while(b>0,q=floor(s/n); while(b>0&&(p=q*n)
=s,print1(p,","); b=0,q++)); s=10*s; t=10*t))}
Extensions
Edited and extended by Klaus Brockhaus, Dec 06 2002