cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078218 Smallest multiple of n that begins with the concatenation of the divisors of n (in increasing order).

Original entry on oeis.org

1, 12, 132, 124, 15, 1236, 175, 1248, 1395, 12510, 1111, 12346128, 1131, 127148, 13515, 124816, 1173, 12369186, 1197, 12451020, 137214, 12112210, 12305, 1234681224, 1525, 1213264, 1392714, 1247142820, 12905, 12356101530, 13113
Offset: 1

Views

Author

Amarnath Murthy, Nov 22 2002

Keywords

Examples

			The concatenation of the divisors of 7 is 17; 175 = 25*7 is the smallest multiple of 7 that begins with 17, so a(7) = 175.
		

Crossrefs

Programs

  • Maple
    cdiv:= proc(n) local D,R,j;
      D:= sort(convert(numtheory:-divisors(n),list));
      R:= D[1];
      for j from 2 to nops(D) do
        R:= R * 10^(1+ilog10(D[j])) + D[j];
      od;
      R
    end proc:
    f:= proc(n) local t,i,r;
      t:= cdiv(n);
      for i from 0 do
        r:= n * ceil(t*10^i/n);
        if r < (t+1)*10^i then return r fi
      od
    end proc:
    map(f, [$1..50]); # Robert Israel, Oct 07 2024
  • PARI
    {for(n=1,31,k=floor(log(n)/log(10))+1; d=divisors(n); v=Str(); for(i=1,matsize(d)[2], v=concat(v,Str(d[i]))); s=eval(v); t=s+1; m=floor(log(s)/log(10))+1; d=k-m; s=s*10^d; t=t*10^d; b=1; while(b>0,q=floor(s/n); while(b>0&&(p=q*n)=s,print1(p,","); b=0,q++)); s=10*s; t=10*t))}

Extensions

Edited and extended by Klaus Brockhaus, Dec 06 2002