cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078226 a(1) = 1, a(n+1) is the smallest odd multiple of a(n) (other than a(n) itself) in which the digits are alternately even and odd.

Original entry on oeis.org

1, 3, 9, 27, 81, 567, 8505, 76545, 9874305, 6763898925, 41672381276925, 25432529276163496725, 6947294789656341278149816125, 2341412581496361870123890149638785410125
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(6) = 567 = 7*a(5); the digits alternate odd, even, odd.
		

Crossrefs

Programs

  • Maple
    isA030141 := proc(n) local dgs,i ; dgs := convert(n,base,10) ; for i from 1 to nops(dgs)-1 do if ( op(i,dgs)+op(i+1,dgs)) mod 2 = 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: A078226 := proc(nmax) local a,f; a := [1] ; while nops(a) < nmax do f := 3 ; while true do if isA030141(f*op(-1,a)) then a := [op(a),f*op(-1,a)] ; print(op(-1,a)) ; break ; fi ; f := f+2 ; od ; od ; end: A078226(13) ; # R. J. Mathar, Mar 01 2007
  • Python
    A078226_list = [1]
    for _ in range(20):
        x = A078226_list[-1]
        y, x2 = x, 2*x
        while True:
            y += x2
            s = str(y)
            for j in range(len(s)-1, -1, -2):
                if not s[j] in ('1', '3', '5', '7', '9'):
                    break
            else:
                for k in range(len(s)-2, -1, -2):
                    if not s[k] in ('0', '2', '4', '6', '8'):
                        break
                else:
                    A078226_list.append(y)
                    break
    # Chai Wah Wu, Nov 06 2014

Extensions

More terms from Sascha Kurz, Jan 30 2003
a(12) from R. J. Mathar, Mar 01 2007
a(13), a(14) from Max Alekseyev, May 12 2010

A078227 a(1) = 2, a(n+1) is the smallest multiple of a(n) such that the digits are alternately odd and even. The unit digit is always even and parity alternates.

Original entry on oeis.org

2, 4, 8, 16, 32, 96, 672, 45696, 2787456, 270383232, 507238943232, 27274745216527872, 141232121898569036783616, 216567470725252501672125832323072
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(7) = 672 = 7*a(6) = 7*96. Starting with the unit digit the digits in 672 are alternately even and odd.
		

Crossrefs

Programs

  • Maple
    isAltr := proc(n) local nshft,osgn,sgn ; nshft := n ; osgn := ( n mod 10 ) mod 2 ; while nshft >= 10 do nshft := floor(nshft/10) ; sgn := ( nshft mod 10 ) mod 2 ; if sgn = osgn then RETURN(false) ; fi ; osgn := sgn ; od ; RETURN(true) ; end: A078227 := proc(prev) local m; m := 2 ; while true do if isAltr(m*prev) then RETURN(m*prev) ; fi ; m := m+1 ; od ; end: n := 2 : while true do print(n) ; n := A078227(n) : od : # R. J. Mathar, Nov 12 2006
  • Python
    A078227_list = [2]
    for _ in range(20):
        x = A078227_list[-1]
        y = x
        while True:
            y += x
            s = str(y)
            for j in range(len(s)-1,-1,-2):
                if not s[j] in ('0','2','4','6','8'):
                    break
            else:
                for k in range(len(s)-2,-1,-2):
                    if not s[k] in ('1','3','5','7','9'):
                        break
                else:
                    A078227_list.append(y)
                    break
    # Chai Wah Wu, Nov 06 2014

Extensions

More terms from R. J. Mathar, Nov 12 2006
a(13) and a(14) from Donovan Johnson, Mar 09 2008

A078228 a(n) = A078227(n+1)/A078227(n).

Original entry on oeis.org

2, 2, 2, 2, 3, 7, 68, 61, 97, 1876, 53771, 5178128, 1533415117
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Extensions

a(8)-a(13) from Donovan Johnson, Nov 11 2008

A078229 a(n) = A078226(n+1)/A078226(n).

Original entry on oeis.org

3, 3, 3, 3, 7, 15, 9, 129, 685, 6161, 610297, 273165705, 337025079889
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Extensions

More terms up to A078226(12)/A078226(11) Hagen von Eitzen, May 15 2009
a(12)-a(13) from Max Alekseyev, May 13 2010
Showing 1-4 of 4 results.