A078324 Primes of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).
2, 5, 17, 37, 73, 101, 109, 197, 257, 401, 433, 577, 677, 1153, 1297, 1373, 1601, 1801, 2593, 2917, 3137, 3457, 3529, 3889, 4001, 4357, 5477, 7057, 8101, 8713, 8837, 9001, 10369, 12101, 13457, 14401, 15377, 15877, 16001, 16901, 17497, 17957, 18253, 18433, 20809
Offset: 1
Keywords
Examples
12*rad(12)+1 = 12*rad(3*2^2)+1 = 12*3*2+1 = 72+1 = 73, therefore 73 is a term. a(33) = 10369 = 10368 + 1: A078310(1728) = (2*3)*(2^6*3^3) = 10368.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a078324 n = a078324_list !! (n-1) a078324_list = filter ((== 1) . a010051') a224866_list -- Reinhard Zumkeller, Jul 23 2013
-
Mathematica
powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Prime[Range[2400]], powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
-
PARI
is(n) = isprime(n) && ispowerful(n-1); \\ Amiram Eldar, Jul 31 2022
Extensions
Missing terms 10369, 16001, 17497 and 18433 inserted by Reinhard Zumkeller, Jul 23 2013