cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078345 Numbers k such that F(k) mod k divides F(F(k) mod k) where F(k) denotes the k-th Fibonacci number.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 12, 13, 19, 20, 21, 22, 24, 25, 26, 29, 31, 32, 36, 37, 38, 41, 44, 48, 49, 50, 55, 58, 59, 60, 61, 62, 65, 71, 72, 73, 79, 80, 82, 84, 89, 95, 96, 97, 101, 104, 108, 109, 118, 120, 122, 125, 131, 132, 139, 140, 142, 144, 145, 149, 151, 155, 156
Offset: 1

Views

Author

Benoit Cloitre, Nov 22 2002

Keywords

Examples

			F(44) = 701408733; 701408733 mod 44 = 25, F(25)=75025 and 25 divides 75025, hence 44 is in the sequence.
		

Crossrefs

Programs

  • Maple
    fmod:= proc(n,m) local M,t; uses LinearAlgebra:-Modular;
        if m <= 1 then return 0 fi;
        if m < 2^25 then t:= float[8] else t:= integer fi;
        M:= Mod(m,<<1,1>|<1,0>>,t);
        round(MatrixPower(m,M,n)[1,2])
    end proc:
    filter:= proc(n) local s;
      s:= fmod(n,n);
      fmod(s,s) = 0
    end proc:
    select(filter, [$1..200]); # Robert Israel, May 10 2016
  • Mathematica
    Unprotect[Divisible];
    Divisible[0, 0] = True;
    okQ[n_] := Module[{F = Fibonacci, m}, m = Mod[F[n], n];  Divisible[F[m], m]];
    Select[Range[75000], okQ] (* Jean-François Alcover, Jul 09 2024 *)

Formula

Conjecture: a(n) is asymptotic to c*n*log(n) with c>0.7