A078345 Numbers k such that F(k) mod k divides F(F(k) mod k) where F(k) denotes the k-th Fibonacci number.
1, 2, 5, 8, 10, 11, 12, 13, 19, 20, 21, 22, 24, 25, 26, 29, 31, 32, 36, 37, 38, 41, 44, 48, 49, 50, 55, 58, 59, 60, 61, 62, 65, 71, 72, 73, 79, 80, 82, 84, 89, 95, 96, 97, 101, 104, 108, 109, 118, 120, 122, 125, 131, 132, 139, 140, 142, 144, 145, 149, 151, 155, 156
Offset: 1
Keywords
Examples
F(44) = 701408733; 701408733 mod 44 = 25, F(25)=75025 and 25 divides 75025, hence 44 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
fmod:= proc(n,m) local M,t; uses LinearAlgebra:-Modular; if m <= 1 then return 0 fi; if m < 2^25 then t:= float[8] else t:= integer fi; M:= Mod(m,<<1,1>|<1,0>>,t); round(MatrixPower(m,M,n)[1,2]) end proc: filter:= proc(n) local s; s:= fmod(n,n); fmod(s,s) = 0 end proc: select(filter, [$1..200]); # Robert Israel, May 10 2016
-
Mathematica
Unprotect[Divisible]; Divisible[0, 0] = True; okQ[n_] := Module[{F = Fibonacci, m}, m = Mod[F[n], n]; Divisible[F[m], m]]; Select[Range[75000], okQ] (* Jean-François Alcover, Jul 09 2024 *)
Formula
Conjecture: a(n) is asymptotic to c*n*log(n) with c>0.7