A078348 Primes p such that every decimal digit d in p appears exactly d times.
3313, 3331, 32233, 32323, 33223, 123323, 132233, 223133, 223313, 223331, 231323, 233231, 312233, 321323, 323123, 3344443, 3434443, 3443443, 4434343, 4443433, 14334443, 14443343, 14443433, 31434443, 31443443, 33434441, 33555553
Offset: 1
Examples
In the prime 3313 the digit "1" appears exactly one time and the digit "3" appears exactly three times.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Primes in A108571.
Programs
-
Mathematica
ddp[x_]:=Select[FromDigits/@Permutations[Flatten[PadRight[{},#,#]&/@x]], PrimeQ]; Take[Flatten[ddp/@Subsets[Range[5]]]//Sort,40] (* Harvey P. Dale, May 13 2020 *)
-
Python
from sympy import isprime from itertools import chain, combinations as C, count, islice from sympy.utilities.iterables import multiset_permutations as mp def powerset(s): return chain.from_iterable(C(s, r) for r in range(len(s)+1)) def agen(): sumlst = [[] for i in range(46)] for s in powerset(range(1, 10)): sumlst[sum(s)].append(s) for numdigits in count(1): found = set() for t in sumlst[numdigits]: diglst = "".join(str(i)*i for i in t) for m in mp(diglst, numdigits): t = int("".join(m)) if isprime(t): found.add(t) yield from sorted(found) print(list(islice(agen(), 30))) # Michael S. Branicky, Aug 10 2022
Comments