A078355 Minimal (positive) solution a(n) of Pell equation b(n)^2 - D(n)*a(n)^2 = +4 with D(n)= A077425(n). The companion sequence is a(n)=A077428(n).
1, 3, 16, 1, 5, 8, 24, 640, 1, 7, 40, 195, 32, 3, 534000, 1, 9, 106000, 3, 12754704, 40, 8, 6525, 226592, 1, 11, 2968, 15, 1039424, 16, 48, 305, 352, 3621, 1856, 1, 13, 9384, 126585, 1360, 8, 896073208080, 56, 72664, 3, 6440, 5, 521904, 1, 15, 140510608, 5
Offset: 1
Keywords
References
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
Links
- S. R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Programs
-
Mathematica
d = Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&]; a[n_] := Module[{a, b, r}, b /. {r = Reduce[a > 0 && b > 0 && a^2 - d[[n]]*b^2 == 4, {a, b}, Integers]; (r /. C[1] -> 0) || (r /. C[1] -> 1) // ToRules} // Select[#, IntegerQ, 1] &] // First; Table[a[n], {n, 1, 52}] (* Jean-François Alcover, Jul 30 2013 *)
Extensions
More terms from Max Alekseyev, Mar 03 2010
Comments