A078356 Minimal positive solution z of Pell equation z^2 - A077426(n)*t^2 = -4.
1, 3, 8, 5, 12, 64, 7, 39, 16, 2136, 9, 1000, 11208, 20, 261, 1552, 11, 3488, 24, 61, 213, 13, 1305, 136, 3528264, 28, 15, 46312, 142022136, 32, 12144, 164, 2613, 2127064, 17, 253724736, 89, 36, 2031654672, 18420, 142528, 19, 10236, 2564, 3447, 40, 223843593936
Offset: 1
Keywords
Examples
41=D(6)=A077426(6) (also A077425(8)), hence a(6)=64 and b(6)=A078357(6)=10 satisfies 64^2 - 41*10^2 = -4.
References
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
Links
Programs
-
Mathematica
$MaxExtraPrecision = 100; A077426 = Select[Range[ 500], ! IntegerQ[Sqrt[#]] && OddQ[ Length[ ContinuedFraction[(Sqrt[#] + 1)/2] // Last]] &]; a[n_] := {z, t} /. {ToRules[ Reduce[z > 0 && t > 0 && z^2 - A077426[[n]]*t^2 == -4, {z, t}, Integers] /. C[1] -> 0]} // Sort // First // First; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jun 21 2013 *)
Extensions
More terms from R. J. Mathar, Sep 24 2009
Edited by Max Alekseyev, Mar 03 2010
Comments