A078389 Number of different values obtained by evaluating all different parenthesizations of 1/2/3/4/.../n.
1, 1, 2, 4, 8, 16, 32, 60, 116, 192, 384, 544, 1088, 1736, 2576, 3824, 7648, 10352, 20704, 28096, 40256, 62128, 124256, 155488, 227872, 349248, 470352, 622128, 1244256, 1499232, 2998464, 3796224, 5289920, 8048544, 10668096, 12562752, 25125504
Offset: 1
Examples
For n=4, ((1/2)/3)/4 = 1/24, (1/2)/(3/4) = 2/3, (1/(2/3))/4 = 3/8, 1/((2/3)/4) = 6 and 1/(2/(3/4)) = 3/8, giving 4 different values 1/24, 3/8, 2/3 and 6. Thus a(4) = 4. a(5) = 2*a(4) = 2*4 = 8, because 5 is a prime; the 8 different values are: 1/120, 3/40, 2/15, 5/24, 6/5, 15/8, 10/3, 30. - _Alois P. Heinz_, Nov 23 2008
Programs
-
Maple
p:= proc(n) option remember; local x; if n<1 then {} elif n=1 then {1} elif n=2 then {1/2} else {seq([x/n, x*n][], x=p(n-1))} fi end: a:= n-> nops(p(n)): seq(a(n), n=1..20); # Alois P. Heinz, Nov 23 2008
-
Mathematica
p[0] = {}; p[1] = {1}; p[2] = {1/2}; p[n_] := p[n] = Union[ Flatten[ Table[ {x/n, x*n}, {x, p[n - 1]}]]]; a[n_] := Length[p[n]]; A078389 = Table[an = a[n]; Print[an]; an, {n, 1, 30}] (* Jean-François Alcover, Jan 06 2012, after Alois P. Heinz *)
Extensions
Corrected a(5)-a(10) and extended a(11)-a(31) by Alois P. Heinz, Nov 23 2008
a(32)-a(37) from Alois P. Heinz, Mar 07 2011
Comments