A078467 a(n) = a(n-1) + a(n-4); first four terms are 0,1,2,3.
0, 1, 2, 3, 3, 4, 6, 9, 12, 16, 22, 31, 43, 59, 81, 112, 155, 214, 295, 407, 562, 776, 1071, 1478, 2040, 2816, 3887, 5365, 7405, 10221, 14108, 19473, 26878, 37099, 51207, 70680, 97558, 134657, 185864, 256544, 354102, 488759, 674623, 931167, 1285269
Offset: 0
Keywords
Examples
The sequence begins 0,1,2,3. a(5) = a(5-1) + a(5-4) = a(4)+a(1)= 3+0 =3. a(6) = a(6-1) + a(6-4) = a(5) + a(2) = 3+1 = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,1},{0,1,2,3},50] (* Harvey P. Dale, Oct 08 2012 *)
Formula
a(n) = a(n-1) + a(n-4); a(0)=0, a(1)=1, a(2)=2, a(3)=3
a(n+1)=sum{k=0..n, binomial(n-k, floor(k/3))} - Paul Barry, Jul 06 2004
G.f.: x(1+x+x^2)/(1-x-x^4). a(n)=A003269(n)+A003269(n-1)+A003269(n-2). [From R. J. Mathar, Nov 25 2008]