A078506 Decimal expansion of sum of inverses of unrestricted partition function.
2, 5, 1, 0, 5, 9, 7, 4, 8, 3, 8, 8, 6, 2, 9, 3, 9, 5, 3, 2, 3, 6, 8, 3, 4, 7, 2, 7, 4, 1, 5, 4, 6, 5, 4, 5, 1, 6, 8, 3, 5, 3, 1, 9, 4, 4, 9, 5, 5, 1, 4, 7, 6, 8, 1, 9, 0, 8, 0, 6, 2, 9, 9, 6, 5, 0, 8, 3, 8, 4, 5, 3, 2, 9, 0, 4, 4, 6, 1, 8, 4, 2, 3, 8, 1, 9, 2, 5, 8, 7, 1, 4, 6, 2, 8, 2, 7, 8, 0, 9
Offset: 1
Examples
2.510597483886293953236834727415465451683531944955147681908...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
digits = 100; NSum[1/PartitionsP[n], {n, 1, Infinity}, NSumTerms -> 10000, WorkingPrecision -> digits+1] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
-
PARI
default(realprecision,100); N=10000; x='x+O('x^N); v=Vec(Ser( 1/eta(x) ) ); s=sum(n=2,#v, 1.0/v[n] )
-
PARI
{a(n) = if( n<-1, 0, n++; default( realprecision, n+5); floor( suminf( k=1, 1 / numbpart(k)) * 10^n) % 10)} /* Michael Somos, Feb 05 2011 */
Formula
Sum_{n>=1} 1/A000041(n) = 2.510597483886...
Extensions
Corrected digits from position 32 on by Ralf Stephan, Jan 24 2011
More terms from Jean-François Alcover, Feb 21 2014
Comments