A078523 Primes of the form a^2 + b^6.
2, 5, 17, 37, 73, 89, 101, 113, 197, 233, 257, 353, 401, 577, 593, 677, 733, 829, 1129, 1153, 1213, 1289, 1297, 1433, 1601, 1753, 1913, 2089, 2273, 2917, 3089, 3137, 3229, 3313, 3433, 4093, 4177, 4217, 4289, 4357, 4457, 4721, 4937, 5393, 5477, 5689, 6121
Offset: 1
Examples
73 = 3^2 + 2^6
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, PNAS February 18, 1997 94 (4) 1054-1058.
- Jori Merikoski, A Cubic analogue of the Friedlander-Iwaniec spin over primes, arXiv:2012.05675 [math.NT], 2020.
Crossrefs
Cf. A028916.
Programs
-
Mathematica
maxN=10000; lst={}; Do[p=i^2+j^6; If[p
-
PARI
list(lim)=my(v=List([2]),b6,t); lim\=1; for(b=1,sqrtnint(lim-1,6), b6=b^6; forstep(a=1+b%2,sqrtint(lim-b6),2, if(isprime(t=a^2+b6), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 18 2017
Comments