cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078530 Bilinear recursive sequence.

Original entry on oeis.org

0, 3, 1, 1, 1, 1, 2, 3, 9, 27, 81, 729, 0, 59049, -531441, 14348907, -387420489, 10460353203, -564859072962, 22876792454961, -1853020188851841, 150094635296999121, -12157665459056928801, 2954312706550833698643, 0
Offset: 0

Views

Author

Michael Somos, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[{m = Mod[n, 12]}, Sign[m] * 2^Boole[m==6] * (-1)^(Mod[Floor[n/12], 2]*(n-1)) * 3^(Boole[m==0] + Floor[(n-4)^2/8])]; (* Michael Somos, Dec 10 2023 *)
  • PARI
    {a(n) = sign(n%12) * (1 + (n%12==6)) * (-1)^(n\12%2 * (n-1)) * 3^((n%12==0) + (n-4)^2\8)};

Formula

a(n) * a(n-8) = 81 * (a(n-2)*a(n-6) - 2*a(n-4)^2).
0 = a(n) * a(n-5) + 3 * a(n-1) * a(n-4) - 9 * a(n-2)*a(n-3).
a(12*n) = 0.
a(2*n+1) = a(-2*n+7) = a(4*n+2)/(81^(n-1)*(a(2*n-1)*a(2*n+2)^2 - a(2*n+3)*a(2*n)^2)) for all n in Z. - Michael Somos, Dec 10 2023
a(n+12) = -(-27)^(n+2) * a(n) for all n in Z. - Michael Somos, Dec 11 2023