cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078558 GCD of sigma(p#) and phi(p#) where p# = A002110(n) is the product of the first n primes.

Original entry on oeis.org

1, 2, 8, 48, 96, 1152, 9216, 1658880, 3317760, 92897280, 2786918400, 100329062400, 802632499200, 370816214630400, 741632429260800, 2966529717043200, 29665297170432000, 355983566045184000
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

Examples

			m=2,3,30,210 primorials are balanced numbers so these GCD() equals phi(): a(n)=1,2,8,48 (see A005867).
		

Crossrefs

Programs

  • Mathematica
    GCD[DivisorSigma[1,#],EulerPhi[#]]&/@FoldList[Times,Prime[Range[20]]] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    a(n)=gcd(prod(i=1,n,prime(i)-1),prod(i=1,n,prime(i)+1)) \\ Charles R Greathouse IV, Dec 09 2013

Formula

a(n) = gcd(A000203(A002110(n)), A000005(A002110(n))) = gcd(A005867(n), A054640(n)).