A078631 Denominators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.
1, 1, 1, 3, 3, 15, 45, 63, 63, 405, 14175, 51975, 93555, 15795, 42567525, 49116375, 91216125, 2170943775, 19538493975, 109185701625, 3093594879375, 10257709336875, 428772250281375, 281764621613475, 158210081654625, 160789593855515625
Offset: 0
Keywords
Examples
p(n) = exp(-2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + ...).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..50
- B. Aspvall and F. M. Liang, The dinner table problem, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
Programs
-
Mathematica
t = 15; y[n_]:=(1+Sum[Subscript[p,k]/n^k,{k,1,t}]); mul=1;start=9; If[t>9,mul=n^(t-9);start=t]; w=Apart[Expand[mul*Simplify[ y[n]*n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10) -((3*n-30)*y[n-11] +(6*n-45)*y[n-10]*(n-10) +(5*n+18)*y[n-9]*(n-9)*(n-10) -(8*n-139)*y[n-8]*(n-8)*(n-9)*(n-10) -(26*n-204)*y[n-7]*(n-7)*(n-8)*(n-9)*(n-10) -(4*n-30)*y[n-6]*(n-6)*(n-7)*(n-8)*(n-9)*(n-10) +(26*n-148)*y[n-5]*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10) +(8*n-74)*y[n-4]*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10) -(9*n-18)*y[n-3]*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10) -(2*n-15)*y[n-2]*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10) +(n+2)*y[n-1]*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10))],n],n]; sol=Solve[Table[Coefficient[w,n,j]==0,{j,start,start-t+1,-1}]]; asympt=y[n]/.sol[[1]]; Table[Denominator[Coefficient[asympt,n,-j]],{j,0,t}] (* Vaclav Kotesovec, Apr 06 2012 *)
Extensions
Terms a(8)-a(25) from Vaclav Kotesovec, Apr 06 2012