A078636 a(n) = rad(n*(n+1)).
2, 6, 6, 10, 30, 42, 14, 6, 30, 110, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 506, 138, 30, 130, 78, 42, 406, 870, 930, 62, 66, 1122, 1190, 210, 222, 1406, 1482, 390, 410, 1722, 1806, 946, 330, 690, 2162, 282, 42, 70, 510, 1326, 1378, 318, 330, 770, 798
Offset: 1
Examples
a(3) = 6 as rad(3*4) = rad(12) = rad(2*2*3) = 2*3 = 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A078636 := proc(n) A007947(n)*A007947(n+1) ; end proc: seq( A078636(n),n=1..10) ; # R. J. Mathar, Mar 15 2023
-
Mathematica
rad[n_] := Times @@ FactorInteger[n][[All, 1]]; a[n_] := rad[n(n+1)]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2024 *)
-
PARI
rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i]) for (k=1,100,print1(rad(k*(k+1))", "))
Formula
From Reinhard Zumkeller, Aug 05 2003: (Start)
a(n) = rad(n*(n+1)) = rad(n)*rad(n+1).
From Reinhard Zumkeller, Apr 10 2008: (Start)
From Amiram Eldar, Apr 04 2025: (Start)
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime} (1 - 2/(p*(p+1))) = 0.4716806... (A307868). (End)