A078672 Number of simple 4-regular 4-edge-connected but not 3-connected plane graphs on n nodes.
0, 0, 0, 0, 0, 0, 1, 1, 6, 16, 59, 188, 685, 2412, 8825, 32110, 118505, 437526, 1624492, 6043496, 22553387, 84345031, 316183706, 1187740914, 4471145942, 16864755973, 63737132585, 241337964503, 915500561602
Offset: 6
Examples
The first such graph has 12 nodes. It is called 12E [Jablan, Radović & Sazdanović, Fig. 2; or Caudron, p. 308c] and looks like that: ___________ / \ / O---O O---O |/|\ /|\ /|\ /| O | O | O | O | |\|/ \|/ \|/ \| \ O---O O---O \___________/
Links
- A. Caudron, Classification des noeuds et des enlacements, Public. Math. d'Orsay 82. Orsay: Univ. Paris Sud, Dept. Math., 1982.
- S. V. Jablan, Ordering Knots
- S. V. Jablan, L. M. Radović, and R. Sazdanović, Basic polyhedra in knot theory, Kragujevac J. Math., 28 (2005), 155-164.
Extensions
a(23)-a(34) from Sean A. Irvine, Jul 09 2025