A078679 Number of Grand Motzkin paths of length n with no zigzags, that is with no factors UDU and DUD.
1, 1, 3, 7, 17, 43, 111, 291, 771, 2059, 5533, 14943, 40523, 110271, 300949, 823417, 2257877, 6203239, 17071779, 47054475, 129872499, 358896927, 992907525, 2749737663, 7622185263, 21146597511, 58714466733, 163142652877, 453612137587, 1262048222181, 3513361583965
Offset: 0
Examples
For n = 3 we have the words hhh, 01h, 0h1, h01, 10h, 1h0, h10.
Links
- Emanuele Munarini and N. Z. Salvi, Binary strings without zigzags, Séminaire Lotharingien de Combinatoire, B49h (2004), 15 pp.
Crossrefs
Cf. A078678.
Programs
-
Mathematica
Table[SeriesCoefficient[Series[Sqrt[ ( 1 - x + x^2 ) / ( 1 - 3 x + x^3 + x^4 )], {x, 0, n}], n], {n, 0, 40}]
-
Maxima
a(n):=coeff(taylor(sqrt((1-x+x^2)/(1-3*x+x^3+x^4)),x,0,n),x,n); makelist(a(n),n,0,12); /* Emanuele Munarini, Jul 07 2011 */
Formula
G.f.: sqrt( ( 1 - x + x^2 ) / ( 1 - 3*x + x^3 + x^4 ) ).
Recurrence: 0 = (n+6)*a(n+6) - (4*n+21)*a(n+5) + (4*n+15)*a(n+4) - (2*n+3)*a(n+3) + a(n+2) - a(n+1) + (n+1)*a(n).
Comments