cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078728 a(n) is the smallest m such that m < 10^n, 10^n + m is prime and if the natural number k is such that 1 < k < 10 and 3 doesn't divide k*10^n + m then k*10^n+m is prime.

Original entry on oeis.org

3, 57, 297, 177, 237, 25111, 231339, 67419, 273817, 345111, 2001753, 912277, 5236153, 9228627, 10599391, 2835261, 60120003, 14054037, 27923629, 41783347, 24590943, 112161513, 230484021, 11446969, 205242589, 583389307, 873650007
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 26 2003

Keywords

Comments

a(n) is the smallest m such that m < 10^n and all six numbers 10^n + m, (Mod[m, 3]+2)*10^n + m, 4*10^n + m, (Mod[m, 3]+5)*10^n + m, 7*10^n + m & (Mod[m, 3]+8)*10^n + m are primes.
Carlos Rivera in Puzzle 245 of www.primepuzzles.net wrote "if the Faride's results ( a(n) for n=1,...,24 ) are plotted in Excel and a trend 'potential' function is asked, we obtain that a(n) is approximately equal to 0.5*n^6; this means that for n=999 a(n)=5*10^17, approximately." Since 10^n+a(n) is prime, for each n a(n)=0 (mod 3) or a(n)=1 (mod 3).

Examples

			a(6)=25111 because all the six numbers 1025111, 3025111, 4025111, 6025111, 7025111, 9025111 are primes and 25111 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[m=1, !PrimeQ[10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+2)10^n+2m-1]||! PrimeQ[4*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+5)10^n+2m-1]||!PrimeQ [7*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+8)10^n+2m-1], m++ ];2m-1); Do[Print[a[n]], {n, 32}]

Formula

a[n_] := (For[m=1, !PrimeQ[10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+2)10^n+2m-1]||! PrimeQ[4*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+5)10^n+2m-1]||!PrimeQ [7*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+8)10^n+2m-1], m++ ];2m-1)