cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078738 Generalized Bell numbers B_{3,2}(n).

Original entry on oeis.org

1, 13, 355, 16333, 1121881, 106708921, 13354028563, 2118817455385, 414426460442833, 97746679844312581, 27311169061720393411, 8908525371578726747173, 3350963996380181114090665, 1438463413778071631322236593, 698374517715612292764726380851
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Crossrefs

B_{1, 1} = A000110, B_{2, 1} = A000262, B_{3, 1} = A020556 and B_{3, 3} = A069223. Row sums of A078740.
Alternating row sums A090437.

Programs

  • Mathematica
    a[n_] := (n+1)*n!^2*Sum[(-1)^k*HypergeometricPFQ[{2-k, n+1, n+2}, {2, 3}, 1]/(2*(k-2)!), {k, 2, 2n}]; Array[a, 13] (* Jean-François Alcover, Sep 01 2015 *)
    Table[Sum[(n + k)!*(n + k + 1)!/(k!*(k + 1)!*(k + 2)!), {k, 0, Infinity}]/E, {n, 1, 20}] (* Vaclav Kotesovec, Jul 27 2018 *)
  • PARI
    nmax = 20; p = floor(3*nmax*log(nmax)); default(realprecision, p);
    for(n=1, nmax, print1(round(exp(-1)*suminf(k=0, (n+k)!*(n+k+1)!/(k!*(k+1)!*(k+2)!))), ", ")) \\ G. C. Greubel and Vaclav Kotesovec, Jul 28 2018

Formula

a(n) = Sum_{k=2..2*n} A078740(n, k) = Sum_{k=1..infinity} (1/k!)*Product_{j=1..n}(fallfac(k+(j-1)*(3-2), 2))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=3, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
a(n) = Sum_{k>=0} ((n+k)!*(n+k+1)!/(k!*(k+1)!*(k+2)!))/exp(1), n>=1. From eq.(40) of the Blasiak et al. reference. [corrected by Vaclav Kotesovec, Jul 27 2018]
E.g.f. for a(n)/n! with a(0)=(exp(1)-1)/exp(1) added: Sum_{k>=0} (hypergeom([k+2, k+1], [1], z)/(k+2)!)/exp(1). From eq. (41) of the Blasiak et al. reference.

Extensions

Edited by Wolfdieter Lang, Dec 23 2003