cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078751 Triangle read by rows: T(m,k) = normalized partial derivative of (t,z) -> exp(t*g(z)) at (0,0), where 2*g(z) = 1 + exp(-2*z*g(z)).

Original entry on oeis.org

2, 4, 8, 24, 48, 48, 224, 480, 576, 384, 2880, 6400, 8640, 7680, 3840, 47232, 107520, 155520, 161280, 115200, 46080, 942592, 2182656, 3306240, 3763200, 3225600, 1935360, 645120, 22171648, 51996672, 81414144, 98703360, 94617600, 69672960
Offset: 0

Views

Author

Carmen Chicone (carmen(AT)chicone.math.missouri.edu), Dec 22 2002

Keywords

Comments

Let g(z) = 1/2 + W(z/e^z) / (2*z), where W is Lambert's W-function; g satisfies 2 * g(z) = 1 + exp(-2 * z *(z)). Let c(m,n) be the coefficient of z^m in the Maclaurin series for g(z)^n; equivalently c(m,n) is 1/m! times the mixed partial derivative (d^(m+n) f(t,z)) / (dz^m dt^n), where f(t,z) = exp(t*g(z)). For 0

Examples

			Triangle begins:
  2;
  4, 8;
  24, 48, 48;
  224, 480, 576, 384;
  ...
		

Crossrefs

First column of triangular array (T(m, 1) for m>=1) is A038049.

Programs

  • Mathematica
    (* ccctri lists first numrows rows of triangular array. *)
    ccctri[numrows_] := (s[j_] := Sum[Binomial[j, i] i^(j-1), {i, 1, j}]; r[j_] := 1/2 (-1)^j 1/(j+1)! s[j+1]; c[m_, k_] := 1/m Sum[((k+1) j-m)c[m-j, k]r[j], {j, 1, m}]; c[0, k_] := 1; ss[m_, k_] := 2^k m! (-1)^(m-k) c[m-k, k]; Flatten[Table[Table[ss[k, j], {j, 1, k}], {k, 1, numrows}]])
    (* ccccol lists maxrow elements of column colnum. *)
    ccccol[colnum_, maxrow_] := (s[j_] := Sum[Binomial[j, i] i^(j-1), {i, 1, j}]; r[j_] := 1/2 (-1)^j 1/(j+1)! s[j+1]; c[m_, k_] := 1/m Sum[((k+1) j-m)c[m-j, k]r[j], {j, 1, m}]; c[0, k_] := 1; ss[m_, k_] := 2^k m! (-1)^(m-k) c[m-k, k]; Table[ss[m, colnum], {m, colnum, maxrow}])

Formula

T(n, k) = 2^k * n! * (-1)^(n-k) * c(n-k,k) where c(n, k) = (1/n) * Sum_{j=1..n} (((k+1)*j-n) * c(n-j, k) * c(j, 1)), where c(0, k)=1 and c(j, 1) = (1/2) * (-1)^j * (1/(j+1)!) * Sum_{i=1..j+1} binomial(j+1, i) * i^j.

Extensions

Edited by Dean Hickerson, Dec 30 2002
Revised by Sean A. Irvine, Jul 14 2025