cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078786 Period of cycle of the inventory sequence (as in A063850) starting with n.

Original entry on oeis.org

2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 4, 4, 4, 4, 3, 1, 1, 1, 1, 1, 4, 3, 3, 3, 2, 1, 1, 1, 4, 4, 1, 3, 2, 2, 2, 1, 1, 1, 4, 3, 3, 1, 2, 2, 2, 1, 1, 1, 4, 3, 2, 2, 1, 2, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Joseph L. Pe, Jan 14 2003

Keywords

Comments

It can be proved that any inventory sequence ends in a cycle all of whose terms are <= 10^20. Conjecture: a(n) <= 4 for all n. It suffices to check this for all inventory sequences starting with n, where n <= 10^20.

Examples

			The inventory sequence starting with 1 is: 1, 11, 21, 1211, 3112, 132112, 311322, 232122, 421311, 14123113, 41141223, 24312213, 32142321, 23322114, 32232114, 23322114, .... which ends in the cycle 32232114, 23322114 of period 2. Hence a(1) = 2.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]];
    per[n_] := Module[{r, t, p1, p}, r = {}; t = g[n]; While[ ! MemberQ[r, t], r = Append[r, t]; t = g[t]]; r = Append[r, t]; p1 = Flatten[Position[r, t]]; p = p1[[2]] - p1[[1]]; p]; Table[per[i], {i, 1, 100}]