A078834 Greatest prime factor of n also contained as binary substring in binary representation of n; a(n)=1, if no such factor exists.
1, 2, 3, 2, 5, 3, 7, 2, 1, 5, 11, 3, 13, 7, 3, 2, 17, 2, 19, 5, 1, 11, 23, 3, 1, 13, 3, 7, 29, 3, 31, 2, 1, 17, 1, 2, 37, 19, 3, 5, 41, 2, 43, 11, 5, 23, 47, 3, 1, 2, 3, 13, 53, 3, 11, 7, 3, 29, 59, 3, 61, 31, 7, 2, 1, 2, 67, 17, 1, 2, 71, 2, 73, 37, 5, 19, 1, 3, 79, 5, 1, 41, 83, 2, 5, 43
Offset: 1
Examples
n=15=3*5 has two factors; only '11'=3 is contained in '1111'=15, therefore a(15)=3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Numeric (showIntAtBase) import Data.List (find, isInfixOf) import Data.Maybe (fromMaybe) a078834 n = fromMaybe 1 $ find (\p -> showIntAtBase 2 ("01" !!) p "" `isInfixOf` showIntAtBase 2 ("01" !!) n "") $ reverse $ a027748_row n -- Reinhard Zumkeller, Sep 19 2011
-
Mathematica
a[n_] := Module[{bn, pp, sel}, bn = IntegerDigits[n, 2]; pp = FactorInteger[n][[All, 1]]; sel = Select[pp, MatchQ[bn, {_, Sequence @@ IntegerDigits[#, 2], _}] &]; If[sel == {}, 1, Max[sel]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Aug 13 2013 *)
Comments