A078868 Decimal concatenations of the quadruples (d1,d2,d3,d4) with elements in {2,4,6} for which there exists a prime p >= 5 such that the differences between the 5 consecutive primes starting with p are (d1,d2,d3,d4).
2424, 2462, 2466, 2642, 2646, 2664, 2666, 4242, 4246, 4264, 4624, 4626, 4662, 4666, 6246, 6264, 6266, 6424, 6426, 6462, 6466, 6626, 6642, 6646, 6662, 6664
Offset: 1
Examples
4624 corresponds to the quadruple (4,6,2,4). It is in the sequence because the 5 consecutive primes 1597, 1601, 1607, 1609 and 1613 have differences (4,6,2,4).
Crossrefs
The least primes corresponding to the quadruples are in A078866. The same primes, in increasing order, are in A078867. The sequences of primes corresponding to the 26 difference patterns are in A022006 (for 2424), A022007 (for 4242) and A078946-A078970. The similarly defined quintuples are in A078870. Cf. A001223.
Programs
-
Mathematica
With[{k = 4}, FromDigits /@ Select[Tuples[Range[2, 6, 2], k], Function[m, Count[Range[k, 10^k], n_ /; Times @@ Boole@ Map[PrimeQ, Prime@ n + Accumulate@ m] == 1] > 0]]] (* Michael De Vlieger, Mar 25 2017 *) (* or *) FromDigits /@ Union@ Select[ Partition[ Differences@ Prime@ Range[3, 2000], 4, 1], Max@ # <= 6 &] (* Giovanni Resta, Mar 25 2017 *)
Extensions
Edited by Dean Hickerson, Dec 20 2002