A078870 Decimal concatenations of the 38 quintuples (d1,d2,d3,d4,d5) with elements in {2,4,6} for which there exists a prime p >= 7 such that the differences between the 6 consecutive primes starting with p are (d1,d2,d3,d4,d5).
24246, 24626, 24662, 26424, 26426, 26462, 26466, 26642, 26646, 26664, 42424, 42462, 42466, 42646, 46246, 46264, 46266, 46626, 46662, 62462, 62642, 62646, 62664, 62666, 64242, 64246, 64264, 64624, 64626, 64662, 64666, 66264, 66266, 66424, 66462, 66466, 66626, 66646
Offset: 1
Examples
66646 is in the sequence because 3301, 3307, 3313, 3319, 3323 and 3329 are consecutive primes with differences (6,6,6,4,6).
Programs
-
Mathematica
With[{k = 5}, FromDigits /@ Select[Tuples[Range[2, 6, 2], k], Function[m, Count[Range[k - 1, 10^4], n_ /; Times @@ Boole@ Map[PrimeQ, Prime@ n + Accumulate@ m] == 1] > 0]]] (* Michael De Vlieger, Mar 25 2017 *) (* or *) FromDigits /@ Union@ Select[ Partition[ Differences@ Prime[Range[4, 9000]], 5, 1], Max@ # <= 6 &] (* Giovanni Resta, Mar 25 2017 *)
Extensions
Edited by Dean Hickerson, Dec 20 2002