A078887 Decimal expansion of Sum {n>=0} 1/6^(2^n).
1, 9, 5, 2, 1, 6, 6, 4, 4, 7, 5, 7, 2, 5, 1, 2, 8, 4, 9, 2, 5, 1, 0, 5, 1, 0, 6, 3, 5, 1, 5, 2, 1, 9, 4, 8, 4, 3, 2, 2, 4, 3, 4, 6, 8, 9, 9, 3, 2, 0, 3, 7, 2, 9, 8, 0, 7, 9, 2, 3, 1, 7, 4, 2, 6, 7, 3, 0, 3, 5, 8, 8, 3, 7, 2, 1, 2, 7, 6, 9, 0, 9, 0, 0, 4, 8, 7, 8, 5, 6, 1, 4, 9, 1, 6, 2, 4, 4, 6, 3, 1, 3, 6, 2, 1
Offset: 0
Examples
0.195216644757251284925...
Links
- Aubrey J. Kempner, On Transcendental Numbers, Transactions of the American Mathematical Society, volume 17, number 4, October 1916, pages 476-482.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
RealDigits[ N[ Sum[1/6^(2^n), {n, 0, Infinity}], 110]][[1]]
-
PARI
suminf(n=0, 1/6^(2^n)) \\ Michel Marcus, Nov 11 2020
Formula
Equals -Sum_{k>=1} mu(2*k)/(6^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020