cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078911 Let r+i*s be the sum of the distinct first-quadrant Gaussian integers dividing n; sequence gives s values.

Original entry on oeis.org

0, 1, 0, 3, 3, 4, 0, 7, 0, 19, 0, 12, 5, 8, 12, 15, 5, 13, 0, 51, 0, 12, 0, 28, 25, 35, 0, 24, 7, 76, 0, 31, 0, 41, 24, 39, 7, 20, 20, 115, 9, 32, 0, 36, 39, 24, 0, 60, 0, 138, 20, 95, 9, 40, 36, 56, 0, 61, 0, 204, 11, 32, 0, 63, 92, 48, 0, 113, 0, 152, 0, 91, 11, 71, 100, 60, 0, 140
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2003

Keywords

Comments

A Gaussian integer z = x+iy is in the first quadrant if x > 0, y >= 0. Just one of the 4 associates z, -z, i*z, -i*z is in the first quadrant.
a(A004614(n)) = 0; a(n) = A078910(n)-A000203(n). - Vladeta Jovovic, Jan 11 2003

Examples

			The distinct first-quadrant divisors of 4 are 1, 1+i, 2, 2+2*i, 4, with sum 10+3*i, so a(4) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Im[Plus@@Divisors[n, GaussianIntegers -> True]], {n, 65}] (* Alonso del Arte, Jan 24 2012; typo fixed by Virgile Andreani, Jul 10 2016 *)
  • PARI
    A078911(n,S=[])=sumdiv(n*I,d,if(real(d)&imag(d)&!setsearch(S,d=vecsort(abs([real(d),imag(d)]))),S=setunion(S,[d]);(d[1]+d[2])>>(d[1]==d[2]))) \\ M. F. Hasler, Nov 22 2007

Extensions

More terms from Vladeta Jovovic, Jan 11 2003