A078947 Primes p such that the differences between the 5 consecutive primes starting with p are (2,4,6,6).
41, 641, 1091, 4001, 9461, 26681, 26711, 44531, 79811, 103991, 110921, 112571, 172421, 223241, 276821, 289841, 290021, 317771, 373181, 381371, 434921, 450881, 493121, 602081, 678761, 788351, 834131, 907211, 974861, 1076501, 1081121, 1097891, 1200371, 1409531, 1426151
Offset: 1
Keywords
Examples
641 is in the sequence since 641, 643 = 641 + 2, 647 = 641 + 6, 653 = 641 + 12 and 659 = 641 + 18 are consecutive primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 4, 6, 6} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
Formula
a(n) == 11 (mod 30). - Amiram Eldar, Feb 21 2025
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments