A078956 Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,6,2).
43, 163, 643, 1213, 2953, 4003, 7573, 11923, 14533, 25453, 26683, 26713, 29863, 41593, 48523, 61543, 68473, 150193, 151153, 172423, 206803, 227593, 290023, 302563, 338563, 343813, 346543, 428023, 527053, 529033, 540373, 547483, 551713, 570403, 577513, 622603, 628993
Offset: 1
Keywords
Examples
43 is in the sequence since 43, 47 = 43 + 4, 53 = 43 + 10, 59 = 43 + 16 and 61 = 43 + 18 are consecutive primes.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from Robert Israel)
Crossrefs
Programs
-
Maple
L:= [0$5]: p:= 1: R:= NULL: count:= 0: while count < 100 do p:= nextprime(p); L:= [L[2],L[3],L[4],L[5],p]; if L -~ L[1] = [0, 4, 10, 16, 18] then count:= count+1; R:= R, L[1]; fi od: R; # Robert Israel, Oct 17 2023
-
Mathematica
Select[Partition[Prime[Range[50000]],5,1],Differences[#]=={4,6,6,2}&][[All,1]] (* Harvey P. Dale, Jan 23 2021 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments