A078974 Decimal expansion of constant C such that Sum_{k>=1} 1/C^p(k) = 1 where p(k) is the k-th prime.
1, 4, 7, 6, 2, 2, 8, 7, 8, 3, 6, 2, 0, 8, 9, 6, 9, 6, 5, 7, 9, 2, 9, 4, 3, 9, 9, 4, 8, 4, 8, 2, 3, 3, 2, 9, 4, 7, 9, 7, 1, 2, 2, 7, 6, 0, 8, 5, 0, 5, 9, 3, 2, 7, 0, 7, 5, 5, 1, 9, 0, 0, 2, 0, 1, 7, 6, 8, 3, 2, 2, 8, 0, 7, 4, 1, 8, 2, 4, 6, 5, 6, 6, 4, 8, 4, 1, 1, 3, 1, 5, 6, 1, 9, 2, 5, 9, 0, 2, 0, 8, 6, 7, 5, 1
Offset: 1
Examples
1.47622878362089696579294399484823329479712276085059327075519...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's Composition Constant, p. 293.
Programs
-
Mathematica
RealDigits[x/.FindRoot[Sum[1/x^Prime[k], {k,1,120}] == 1, {x, 1.476}, WorkingPrecision -> 120]][[1, 1 ;; 105]] (* Jean-François Alcover, Mar 22 2011 *)
Formula
Equals 1/A084256.