cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078988 Chebyshev sequence with Diophantine property.

Original entry on oeis.org

1, 65, 4289, 283009, 18674305, 1232221121, 81307919681, 5365090477825, 354014663616769, 23359602708228929, 1541379764079492545, 101707704826538279041, 6711167138787446924161, 442835323455144958715585, 29220420180900779828304449, 1928104896615996323709378049
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

Bisection (even part) of A041025.
(4*A078989(n))^2 - 17*a(n)^2 = -1 (Pell -1 equation, see A077232-3).
Starting with a(1), hypotenuses of primitive Pythagorean triples in A195619 and A195620. - Clark Kimberling, Sep 22 2011

Examples

			(x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1.
		

Crossrefs

Row 66 of array A094954.
Cf. A097316 for S(n, 66).
Row 4 of array A188647.

Programs

  • GAP
    a:=[1,65];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1, 65]; [n le 2 select I[n] else 66*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-66x+x^2), {x,0,20}], x] (* Michael De Vlieger, Apr 15 2019 *)
    LinearRecurrence[{66,-1}, {1,65}, 21] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    Vec((1-x)/(1-66*x+x^2) + O(x^20)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    ((1-x)/(1-66*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1-x)/(1-66*x+x^2).
a(n) = T(2*n+1, sqrt(17))/sqrt(17) = ((-1)^n)*S(2*n, 8*i) = S(n, 66) - S(n-1, 66) with i^2=-1 and T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310.
a(n) = A041025(2*n).
a(n) = 66*a(n-1) - a(n-2) for n>1 ; a(0)=1, a(1)=65. - Philippe Deléham, Nov 18 2008