A079008 a(n) is smallest number k such that the n successive values of phi(k+j) (j=0,..,n-1) are all distinct.
1, 2, 5, 11, 11, 17, 17, 37, 46, 46, 112, 112, 123, 149, 149, 149, 257, 257, 257, 257, 257, 257, 257, 261, 658, 658, 685, 741, 741, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359, 4097, 4097, 4097, 4097, 4097
Offset: 1
Keywords
Examples
a(8)=37, values of phi(k) for k=37,..,44 are {36, 18, 24, 16, 40, 12, 42, 20}.
Programs
-
Mathematica
kul[x_] := Length[x]-Length[Union[x]]; frt[x_] := Table[EulerPhi[x+j], {j, 0, h-1}]; Table[fa=1; k=0; Do[s=frt[n]; s1=kul[s]; If[Equal[s1, 0]&&Equal[fa, 1], k=k+1; Print[{h, n, s}]; fa=0], {n, 1, 10000}], {h, 1, 50}]
-
PARI
a(n) = if(n==1, 1, my(v=vector(n, i, eulerphi(i))); for(k=n, oo, if(#Set(v)==n, return(k-n)); v[k%n+1]=eulerphi(k))); \\ Jinyuan Wang, Feb 10 2021