A079011 Least prime p introducing prime-difference pattern {d, 2*d}, where d = 2*n, i.e., {p, p+2*n, p+2*n+4*n} = {p, p+2*n, p+6*n} are consecutive primes.
5, 397, 503, 1823, 1627, 8317, 5939, 94153, 69539, 83117, 444187, 177019, 428873, 1179649, 955511, 1625027, 2541289, 1290683, 19856363, 12183757, 5412091, 23374859, 27248701, 38235013, 21369059, 34718041, 84120737, 59859131, 125283913, 44155159, 70136597, 324954127
Offset: 1
Keywords
Examples
For n=3, d = 2*n = 6, d-pattern = {6, 12}, a(3) = 503, first corresponding prime triple is {503, 509, 521}.
Programs
-
Mathematica
d[x_] := Prime[x+1]-Prime[x]; t=Table[0, {70}]; Do[s=d[n]/2; If[(d[n+1]==4*s)&&(t[[s]]==0), t[[s]]=Prime[n]], {n, 2, 100000}]; t
-
PARI
a(n) = my(p=5, q=3, r=2); until(r+2*n==q&&q+4*n==p, r=q; q=p; p=nextprime(p+1)); r; \\ Jinyuan Wang, Feb 10 2021
Extensions
Terms corrected and more terms from Jinyuan Wang, Feb 10 2021