A079075 "Memory" of fibonacci(n): the number of (previous) Fibonacci numbers contained as substrings in fibonacci(n).
0, 1, 0, 0, 0, 0, 3, 3, 1, 1, 1, 2, 2, 1, 2, 1, 3, 3, 3, 1, 2, 2, 3, 2, 2, 6, 3, 4, 4, 3, 6, 6, 4, 3, 2, 5, 5, 4, 4, 8, 5, 3, 2, 4, 5, 4, 6, 3, 2, 5, 5, 6, 5, 5, 7, 6, 5, 6, 4, 6, 6, 6, 7, 7, 4, 5, 8, 6, 3, 6, 7, 5, 6, 8, 6, 6, 5, 6, 8, 7, 6, 7, 6, 5, 5, 6, 7, 5, 4, 5, 6, 8, 7, 6, 5, 6, 8, 8, 10, 6
Offset: 1
Examples
The (previous) Fibonacci numbers contained as substrings in fibonacci(7) = 13 are fibonacci(1) = 1, fibonacci(2) = 1, fibonacci(4) = 3. Hence a(7) = 3. 13 is the smallest Fibonacci number with memory = 3.
Crossrefs
Cf. A079066.
Programs
-
Mathematica
ub = 100; tfib = Table[ToString[Fibonacci[i]], {i, 1, ub}]; a = {}; For[i = 1, i <= ub, i++, m = 0; For[j = 1, j < i, j++, If[Length[StringPosition[tfib[[i]], tfib[[j]]]] > 0, m = m + 1]]; a = Append[a, m]]; a