A079097 Mix odd numbers and squares.
1, 1, 3, 4, 5, 9, 7, 16, 9, 25, 11, 36, 13, 49, 15, 64, 17, 81, 19, 100, 21, 121, 23, 144, 25, 169, 27, 196, 29, 225, 31, 256, 33, 289, 35, 324, 37, 361, 39, 400, 41, 441, 43, 484, 45, 529, 47, 576, 49, 625, 51, 676, 53, 729, 55, 784, 57, 841, 59, 900, 61, 961, 63, 1024, 65
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Wolfram Research, Pi
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Magma
[(-1)*((1+n)*(-5-3*(-1)^n+(-1+(-1)^n)*n))/8: n in [0..70]]; // Vincenzo Librandi, Jan 28 2016
-
Maple
f:=n->if n mod 2 = 0 then n+1 else ((n+1)/2)^2; fi;
-
Mathematica
Riffle[2 Range@ Floor[#/2] - 1, Range[#]^2] &@66 (* or *) CoefficientList[Series[(1 + x^2) (x^2 - x - 1)/((x - 1)^3*(1 + x)^3), {x, 0, 64}], x] (* Michael De Vlieger, Jan 27 2016 *) LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 1, 3, 4, 5, 9}, 70] (* Vincenzo Librandi, Jan 28 2016 *)
-
PARI
Vec((1+x^2)*(x^2-x-1)/((x-1)^3*(1+x)^3) + O(x^100)) \\ Colin Barker, Jan 27 2016
Formula
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: (1+x^2)*(x^2-x-1)/((x-1)^3*(1+x)^3). - R. J. Mathar, Jan 05 2009
From Colin Barker, Jan 27 2016: (Start)
a(n) = (-1)*((1+n)*(-5-3*(-1)^n+(-1+(-1)^n)*n))/8.
a(n) = n-1 for n even.
a(n) = (n^2+2*n+1)/4 for n odd.
(End)
Comments